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Abstract. The neutron excess dependence of heavy-ion fusion barriers is investigated, guided by predictions
of different ion-ion potentials. We develop phenomenological expressions for the fusion barrier radii and
heights, involving both the entrance channel mass asymmetry and neutron excess of the projectile and
target. Compared to commonly used formulas, the developed expressions reproduce theoretical barrier
parameters with a higher accuracy. Furthermore, they provide a means to assess the importance of the
neutron excess degree of freedom implied by each potential.

PACS. 24.10.-i Nuclear reaction models and methods – 25.70.-z Low and intermediate energy heavy-ion
reactions – 25.70.Jj Fusion and fusion-fission reactions – 25.60.Pj Fusion reactions

1 Introduction

The advent of radioactive beam facilities has opened new
frontiers in studies of nuclear structure and reactions [1].
Fusion reactions involving nuclei with an extreme neutron
excess result in the synthesis of new nuclear species farther
away from the valley of nuclear stability [2]. This effort
is expected to enhance the knowledge gathered from the
large amount of data already accumulated from studies
with stable beams [3,4].

Fusion excitation functions are often analyzed with the
classical sharp-cutoff expression σfus(E) = πR2

b(1−Vb/E),
where E is the bombarding energy in the center-of-mass
system. This expression assumes strong absorption be-
tween the interacting nuclei and involves the barrier ra-
dius Rb and height Vb. The barrier radius is defined as
the distance at which the nuclear attraction balances the
Coulomb repulsion, and the barrier height as the sum of
nuclear plus Coulomb potential in a head-on collision. Sys-
tematic studies of experimental fusion excitation functions
have resulted in parametrizations of fusion barrier pa-
rameters Rb and Vb [3,4]. These parametrizations provide
valuable guides for the assessment of fusion cross section
measurements and aid the design of new experiments.

From the theory point of view, the aforementioned ex-
pression can be used for the prediction of fusion excitation
functions. For example, in refs. [5,6] fusion barrier param-
eters have been calculated within the sudden approxima-
tion, using the Skyrme interaction energy density formal-
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ism for closed- and unclosed-shell nuclei. Simple analytical
expressions have been obtained for the barrier radii and
heights. The calculated excitation functions were in good
agreement with experimental data. Furthermore, this pro-
cedure was found consistent with the alternative approach
of parametrizing the energy density nuclear potential and
deducing next the barrier parameters and excitation func-
tions [6].

We note that parametric expressions employed in the
literature for Rb, include either linear expressions of the
form [4,7]

Rb = a
(
A

1/3
1 +A

1/3
2

)
+ b (1)

or [3]

Rb = (a+ b log10 (Z1Z2))
(
A

1/3
1 +A

1/3
2

)
, (2)

where a and b are constants, or polynomial expressions of
the form [5,6]

Rb =
3∑

i=0

ci (A1A2)
i
, (3)

where ci are constants. These expressions involve the mass
and atomic numbers of the reacting nuclei and make no
reference to the neutron excess. Similarly, Coulomb bar-
rier heights are usually parametrized [4,7] by the product
of the two charges over an effective radius of the form of
eq. (1) or eq. (2). However, a recent systematic study with
the Skyrme energy density formalism has shown a linear
increase in the barrier radius and a decrease in barrier
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height with increasing N/Z ratio of the compound system,
in reactions involving Ca and Ni isotopes with a large neu-
tron excess [8]. One may wonder whether some neutron ex-
cess term should be included in the above expressions. The
need for detailed parametrizations of fusion barrier param-
eters has been pointed out in the literature [5,6,8,9].

The object of the present paper is to elucidate the
role of the neutron excess in these empirical descriptions.
For this purpose, we examine the s-wave barrier parame-
ters predicted by different analytic nuclear potentials. The
isospin dependence is studied by varying the neutron ex-
cess of isobaric pairs of colliding nuclei, starting with sym-
metric cases involving N = Z nuclei. As a result, we de-
velop parametric expressions for Rb and Vb incorporating
the entrance channel mass asymmetry and the neutron
excess. A significant improvement is obtained over com-
monly used expressions for Rb and Vb. Furthermore, by
means of the extracted coefficients, these potentials are
assessed in terms of their effectiveness in the neutron ex-
cess degree of freedom.

2 Construction of an expression for Rb and Vb

We start with a simple exponential (S.E.) nuclear poten-
tial of the form

Vn(r) = −V0 exp
(
−r − R0

a

)
(4)

with parameters [10] V0 = 67.0MeV, R0 = r0(A
1/3
1 +

A
1/3
2 ), where r0 = 1.17 fm, and a = 0.574 fm. For zero an-

gular momentum, the fusion barrier radius Rb is obtained
as the solution of

d
dr

(Vn(r) + VCoul(r))r=Rb
= 0, (5)

where VCoul(r) = Z1Z2e
2/r is the Coulomb potential. The

barrier height Vb is given by the total potential at r = Rb.
Equation (5) leads to a transcendental equation for r,
whose solution can be found numerically. Below, we ob-
tain a parametric expression for this solution using fitting
arguments.

We consider the barrier radii of a given N = Z projec-
tile incident on N = Z targets. These are well represented
by an expression of the form

Rb = a′A1/3
t + b′A−1/3

t + c′,

where the A
−1/3
t -term facilitates the description of the

low-At behavior of Rb. Then, we consider different N = Z
projectiles incident on the previous targets. Fitting Rb

with the previous expression, we realize that the coeffi-
cients a′, b′ and c′ have a cubic-root dependence on the
projectile mass. This suggests the following expression

Rb = a
(
A1/3

p +A
1/3
t

)
+ b

(
A−1/3

p +A
−1/3
t

)
+ c.

We find that the new coefficients a, b and c have a weak de-
pendence on Ap and At, which can be can be minimized

Fig. 1. Barrier radii of 16O projectiles incident on targets with
the indicated mass numbers as a function of the relative neu-
tron excess of the targets (open squares). The solid curves guide
the eye. Closed squares refer to the barrier radius of targets
near the valley of stability.

with the inclusion of two additional terms: one propor-
tional to the reduced mass of the system and another one
proportional to the compound nucleus mass. This leads to
the expression

Rb = a
(
A1/3

p +A
1/3
t

)
+ b

(
A−1/3

p +A
−1/3
t

)
+c

ApAt

Ap +At
+ d (Ap +At) + e. (6)

Next, we investigate the neutron excess dependence
of Rb. For a given N = Z projectile, we vary the neu-
tron and atomic number of the target, keeping a constant
At = Nt + Zt. A typical example is given in fig. 1, where
the exact barrier radii for 16O projectiles (open squares)
are plotted versus the relative neutron excess of the tar-
gets. Target masses ranging from A = 10 up to A = 200
are shown. The closed squares indicate barrier radii cor-
responding to targets near the valley of nuclear stability.
Here, the relative neutron excess of the targets varies from
0 up to 0.3, which refers to nuclei with N = Z up to
the extreme value of N ≈ 1.9Z, respectively. This range
spans a wide region of target nuclei far remote from the
valley of nuclear stability. To a good approximation, the
dependence of Rb on

(
N−Z

A

)
t
is described with a linear

function. A similar behavior was realized for other N = Z
projectiles as well. Therefore, for this class of projectile
and target combinations we write

Rb = f ′ + g′
(

N − Z

A

)
t

. (7)
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Fig. 2. (a) Barrier radii as a function of A
1/3
p +A

1/3
t . Exact val-

ues (crosses) are shown for a large number of projectile-target
combinations with a wide range of neutron to proton ratios.
The solid line represents a linear fit with eq. (1). (b) Percent
differences of the exact values from the linear fit.

The coefficients f ′ and g′ were further examined for a
possible projectile mass dependence. Varying the projec-
tile mass number, but still keeping Np = Zp, we find that
the parameter f ′ is a constant. However, g′ was found to
vary with Ap as

g′ = g1 +
g2

Ap
,

where g1 and g2 are constants. Therefore, eq. (7) can be
written as

Rb = f ′ +
(

g1 +
g2

Ap

)(
N − Z

A

)
t

. (8)

The coefficient f ′ was found very close to the barrier
radius of the corresponding isobaric pair of nuclei with
N = Z, given by eq. (6).

As expected from symmetry considerations, a term
similar to eq. (8) has to be added with interchanged pro-
jectile and target indices. Therefore, we arrive at the fol-
lowing phenomenological expression for the barrier radius
of two nuclei with a neutron excess:

Rb = a(A1/3
p +A

1/3
t ) + b(A−1/3

p +A
−1/3
t ) + c

ApAt

Ap +At

+d(Ap +At) +
(

e+
f

Ap

)(
N − Z

A

)
t

+
(

e+
f

At

) (
N − Z

A

)
p

+ g . (9)

For the purpose of testing various expressions, a refer-
ence data set was created consisting of numerically calcu-
lated barrier radii of all projectile and target combinations

Fig. 3. (a) Percent differences between exact fusion barrier

radii and fitted values versus A
1/3
p + A

1/3
t . The fit is based on

the expression of the present work. A similar plot for Vb is
shown in panel (b), where the predicted values are deduced
from eq. (11).

with Zp, Zt = 5, 10, 15, . . . , 70. The relative neutron ex-
cess ((N − Z) /A)p,t was assumed to vary between 0 and
0.2 in steps of 0.05. This corresponds to N/Z = 1 up to
N/Z = 1.5, a range which spans the accessible physical
mass regions. Combinations for which the barrier position
could not be located, due to the flatness of the potential
energy curve, were not considered.

Figure 2(a) shows the exact barrier radii (crosses) of
the reference data set plotted as a function of A

1/3
p +A

1/3
t .

A linear fit with eq. (1) (solid line) reproduces only the
average trend and cannot account for the spread of values,
which is a consequence of the large neutron excess range
considered. Deviations of the data points about the linear
fit are of the order of ±2.0%, as shown in fig. 2(b).

Using a multivariate linear regression fit, we deter-
mined the coefficients of eq. (9) considered as an equation
of a plane surface in 7 dimensions. The percent differences
between exact and fitted values of Rb versus A

1/3
p + A

1/3
t

are shown in fig. 3(a). The numerical solution of eq. (5)
is reproduced to better that ±0.05%. This presents a sig-
nificant improvement over the description made with the
simple linear fit.

The quality of a fit can be assessed with a calculated
χ2 per point:

χ2 =
1
N

N∑
i=1

(
Rex

i − Rfit
i

Rex
i

)2

,

where N is the number of data points (projectile-target
combinations), and Rex, Rfit are the exact and fitted value
of the radius, respectively. Consecutive fits were performed
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Fig. 4. χ2 obtained by fitting the reference set of barrier radii
with a successively increasing number of terms (a through f)
in eq. (9), as well as eqs. (2) and (3).

with eq. (9), starting with the first term and adding one
more coefficient at a time, until we arrive to the complete
expression. The corresponding values of χ2 are shown in
fig. 4 (a through f). We realize that by adding the terms
with coefficients a through d, we obtain a weak decrease
in χ2. Note that case a corresponds to a linear fit with
eq. (1). With the inclusion of the neutron excess terms
(with coefficients e and f), we obtain a dramatic decrease
in χ2 by 3 orders of magnitude. On the same plot, we
show the χ2 obtained with eqs. (2) and (3) on the same
data set. The quality of these fits is similar to or slightly
worse than the linear fit with eq. (1). We conclude that
the neutron excess terms in eq. (9) produce a substantial
improvement in the description of variations in Rb related
to the neutron excess of the projectile and/or target.

For a given projectile with N = Z incident on isobaric
targets, fusion barrier heights calculated with the above
potential show a linear decrease with increasing neutron
excess of the target nucleus. This is illustrated in fig. 5,
for 16O projectiles incident on isobaric chains of nuclei
with the indicated mass numbers. Parametrizations can
be obtained in terms of the equivalent Coulomb radius
RCoul

fus , representing the distance at which the Coulomb
potential equals the barrier height

Vb =
Z1Z2e

2

RCoul
fus

. (10)

Alternatively, for an exponential nuclear potential with
diffuseness parameter a, one may obtain Vb using the ex-
pression [11]

Vb =
Z1Z2e

2

Rb

(
1− a

Rb

)
. (11)

Using eq. (9) in a multivariate linear regression fit for
RCoul

fus we obtain an agreement with the numerically cal-
culated barrier heights to better than ±0.05%. The same
degree of agreement was obtained with the parametriza-
tion of Rb, combined with the diffuseness parameter
a = 0.574 fm, in eq. (11). The percent deviations from the
exact values are shown in fig. 3(b).

Fig. 5. Barrier heights of 16O projectiles incident on isobaric
chains of nuclei with the indicated mass numbers as a func-
tion of the neutron excess of the target (open squares). Closed
squares refer to the barrier height of targets near the valley of
stability.

3 Barrier parameters implied by different
nuclear potentials

The coefficients of eq. (9) for Rb and RCoul
fus were deduced

for the following heavy-ion potentials, listed according to
increasing complexity in their functional form.

3.1 The Christensen and Wither potential

The Christensen and Winther potential (C.W.) has been
derived in an analysis of elastic-scattering data [7]. It is
given by

Vn(r) = −S0R12 exp
(
−r − R

a

)
,

where

S0 = 50MeV · fm−1,

a = 0.63 fm,

R = R1 +R2,

with Ri =
(
1.233A1/3

i − 0.978A−1/3
i

)
fm, (i = 1, 2) and

R12 = R1R2/(R1 +R2).
The strength of this nuclear potential depends on the

projectile and target masses via the reduced radius R12.

3.2 The proximity potential

The proximity potential [12] (PROX.) predicts the inter-
nuclear potential as being due to the separation between
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two semi-infinite slabs of nuclear matter, modified by a
geometric curvature correction, times an energy density
functional Φ(ξ) of the separation distance ξ (whose ana-
lytic expression is given in ref. [13]):

Vn = −4πγbRΦ(ξ).

The reduced radius R is defined in terms of the half-
density radii of the two nuclei:

R =
C1C2

C1 + C2
,

where Ci = Ri

[
1− (b/Ri)

2
]
, with Ri = (1.28A1/3

i −0.76+
0.8A−1/3

i ) fm.
For the diffuseness parameter b, the value b = 0.99 fm

was used. The separation distance ξ is defined as ξ =
r − (R1 + R2). For the surface tension γ, we used the
liquid-drop surface energy coefficient given by

γ = 0.9517

[
1− 1.7826

(
N − Z

A

)2
]
MeV · fm−2,

where N , Z and A refer to the combined system of the
two interacting nuclei.

Here, the nuclear-potential strength has a dependence
on the relative neutron excess of the projectile and target,
and a mass dependence through the reduced-radius factor.

3.3 The Yukawa-plus-exponential potential

The Yukawa-plus-exponential potential [14,15] (Y.P.E.)
satisfies the liquid-drop saturation condition at saturation
density. It has the form

Vn = −Vred (2 + s/a) exp (−s/a) ,

where s = r − (R1 + R2) is the separation between the
equivalent sharp surfaces of the two nuclei (whereas the
central radii are used to define s in the proximity model).

In an approximate form, Vred is expressed as

Vred = [cs(1)cs(2)]
1/2 aR1R2

r2
0 (R1 +R2)

.

This is valid when R1/a, R2/a � 1. There are four pa-
rameters in this model, namely, the radius parameter r0,
the range of the folding function a, the surface energy
constant as, and the surface asymmetry constant ks. The
neutron excess dependence of Vred is included in the ge-
ometric mean of the effective surface energy constants
cs(i) = as

{
1− ks [(N − Z)/A]2

}
.

In our calculations we used the complete expression
for Vred together with the model parameters as reported
by Möller and Nix [15,16].

3.4 Nuclear potential from the energy density
formalism

In ref. [17], the interaction between two heavy ions
has been calculated using the energy density formalism
(E.D.F.) and Fermi distributions for the nuclear densities.
The nuclear part of the interaction potential was found to
satisfy the proximity scaling, to a good extent. The func-
tional form of this potential is similar to the proximity
potential, apart from the surface coefficient factor. The
neutron excess dependence of the projectile and target is
introduced through the reduced radius of the system [17].

3.5 Remarks on the deduced coefficients

For the previous nuclear potentials, the fit procedure ex-
tended over a common mass region, prepared as described
in sect. 3. The deduced coefficients of eq. (9) for the fu-
sion barrier radius and the equivalent Coulomb radius are
compiled in tables 1 and 2, respectively. The χ2 and per-
cent deviations from the exact values of Rb and Vb are also
given.

Percent deviations vary between±0.05% up to±0.50%
for Rb, and between ±0.05% up to ±0.22% for Vb. There-
fore, our functional form accounts well for the neu-
tron excess dependence of Rb and RCoul

fus implied by
each heavy-ion potential, despite their differences in the
strength of the nuclear attraction. This is not surprising,
since the s-wave barrier radius appears in the tail region
of the nuclear potential. Differences in the strength of the
nuclear attraction show up in the values of the deduced
coefficients.

The coefficients a, b, c and d specify the (trivial) mass
dependence of Rb and RCoul

fus . On the other hand, the coef-
ficients e and f specify the effectiveness of each potential
in the neutron excess of the projectile and/or target. In
particular, let us consider a projectile with N = Z inci-
dent on a series of isobaric targets. Compared to Rb of the
target with N = Z, the barrier radius should vary as

∆Rb =
(

e+
f

Ap

) (
N − Z

A

)
t

. (12)

The quantity e + f/Ap is a measure of the barrier radius
variation with the relative neutron excess of the target.
This quantity is plotted in fig. 6 for the nuclear poten-
tials under consideration. Shaded histograms correspond
to 16O and the open ones to 40Ca. The first two poten-
tials show a similar behavior. Their neutron excess de-
pendence is equally strong for the light and heavy projec-
tile. However, the C.W. has a stronger dependence than
the S.E. potential. In contrast, the other three potentials
have a stronger dependence for the heavy than for the
light projectile. Among them, the Y.P.E. potential has the
strongest dependence. Furthermore, the E.D.F. appears
similar to the proximity potential. This is consistent with
the similarity of the two potentials in the tail region, de-
spite the differences they exhibit in the inner region, as
pointed out in ref. [17].
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Table 1. Coefficients and χ2 for the barrier radius expression.

Nuclear Potential

Coefficient S.E. C.W. PROX. Y.P.E. E.D.F.

a 0.944 0.961 1.007 1.006 0.877

b 2.553 0.147 1.57 1.9 −0.066

c −9.755 × 10−4 3.391 × 10−4 7.693 × 10−4 −0.011 −1.98 × 10−3

d 1.14 × 10−3 1.422 × 10−3 1.162 × 10−3 −1.205 × 10−3 1.692 × 10−3

e 0.706 0.783 0.847 1.296 0.822

f 0.269 0.263 −1.836 −4.238 −1.621

g 1.671 2.822 1.269 1.651 4.575

χ2(Rb) 5.846 × 10−8 1.551 × 10−7 1.153 × 10−6 4.921 × 10−6 4.012 × 10−7

∆Rb/Rb (%) ±0.05 ±0.10 ±0.30 ±0.50 ±0.20

Table 2. Coefficients and χ2 for the effective Coulomb radius expression.

Nuclear Potential

Coefficient S.E. C.W. PROX. Y.P.E. E.D.F.

a 0.939 0.954 0.973 0.917 0.892

b 2.542 0.15 1.468 1.586 −0.161

c −9.161 × 10−4 4.485 × 10−4 1.268 × 10−3 −4.059 × 10−3 −1.277 × 10−3

d 1.16 × 10−3 1.452 × 10−3 1.501 × 10−3 5.161 × 10−4 1.684 × 10−3

e 0.704 0.781 0.834 0.971 0.717

f 0.255 0.229 −1.735 −1.407 −1.121

g 2.319 3.534 2.331 3.125 5.039

χ2(Vb) 5.029 × 10−6 1.442 × 10−5 6.584 × 10−5 3.628 × 10−5 2.164 × 10−5

∆Vb/Vb (%) ±0.05 ±0.09 ±0.22 ±0.18 ±0.15

Fig. 6. The neutron excess parameter (e+ f/Ap) is shown for
the different nuclear potentials examined in the present work.
Shaded histograms correspond to 16O and the open ones to
40Ca projectiles.

Similar conclusions can be drawn from an inspection of
the quantity e+f/Ap for RCoul

fus , apart from some weaken-
ing of this quantity for the E.D.F. compared to the prox-
imity potential.

4 Discussion

Our results are consistent with an increase in Rb and a de-
crease in Vb with increasing neutron excess of the reaction

partners. This is in qualitative agreement with the results
of Puri et al. [8], despite the difference of our expression
from the functional dependence of Rb, reported in ref. [8].
In this respect, we have to note the work of Christley et
al., who have created nuclear densities using a Hartree-
Fock approach with Skyrme forces [9]. These calculations
show the development of a neutron skin as one moves to-
wards the drip line. The ion-ion potential was obtained by
double folding an effective nucleon-nucleon interaction. It
was realized that in neutron-rich nuclei, the neutron and
proton densities have different profiles. As a result, the
root-mean-square radius of the nucleus does not simply
scale as A1/3. Therefore, the scaling properties of such an
ion-ion potential (and, consequently, of the implied fusion
barrier parameters) should be different than in standard
ion-ion potentials. Providing parametrizations within such
a framework would be useful. However, such a task is out-
side the scope of the present work.

Summarizing, we presented phenomenological expres-
sions suitable for the parametrization of fusion barrier
radii and heights predicted by analytic nuclear potentials.
Compared to commonly used formulas, they were found
to reproduce theoretical barrier parameters with a higher
accuracy. The proposed expressions make explicit refer-
ence to the entrance channel mass asymmetry and the
neutron excess degree of freedom of the projectile and
target nucleus. The deduced coefficients make possible the
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assessment of the importance of the neutron excess degree
of freedom implied by each potential.
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